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A thermally conducting body floating in a fluid that is stably stratified by heat 
may develop unstable oscillations provided the body temperature shows a large 
enough time-lag relative to the fluid temperature. A gravitationally stable, non- 
Boussinesq fluid may itself become unstable in an oscillatory way through a 
similar diffusive time-lag. One case, that is investigated in the present work, 
occurs when the basic vertical temperature gradient /3 = d T / d z  and the thermal 
expansion coefficient a vary in an opposite sense: ,I3 is large when a is small and 
vice versa. The variation in p is here assumed to be caused by internal heat 
sources and sinks. 

If vertical oscillations are started in such a fluid temperature variations will 
be produced in the regions of large p but the buoyancy forces do not develop 
until these perturbations have diffused to regions of large a. With an appropriate 
lag, the buoyancy forces may give a positive work and the oscillations can grow. 

Two models are investigated. The first one is a non-viscous two-layer model 
with p = 0, a = a, in one layer and = Po, a = 0 in the other layer. For this 
model analytical results are derived. The second model is more realistic, having 
continuous profiles P(z)  and a@), viscosity and horizontal boundaries. The case 
is studied by a numerical technique, solving the equations directly in time. 

A discussion of the numerical method is given in an appendix by K. Holmgker. 

1. Background 
For a fluid that is heated uniformly above absolute stability can be proved, 

assuming that the temperature gradient ,8 and the thermal expansion coefficient 
CL are constant and positive (z  is the vertical co-ordinate, counted positive 
upward). This is a trivial case of the classical Rayleigh problem. One may ask 
what happens in the more general case where p and a are functions of z, but still 
positive at every point to keep the fluid gravitationally stable. Such a variable p 
may occur through the dependence of the thermal diffusivity on the variables 
of state, or through an effect of internal heat sources and sinks (the second case 
is considered in the present study). A variable a may also occur through the 
dependence on the variables of state, particularly the temperature. 

Judging from the Rayleigh problem one may feel that such situations are 
also stable. However, the proof of stability cannot be carried through in the case 
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where /3 and a are general, positive functions of z. One must therefore consider 
the possibility that some new form of instability, differing from ordinary Rayleigh 
convection, occurs at  least for certain profiles p(z )  and a(z). 

It should be noticed that the development of an instability in a gravitationally 
stable fluid in no way contradicts the basic laws of mechanics. Energy exists in 
the form of heat, and since there is also a temperature difference in the system 
a certain part of this heat can be transformed to mechanical energy in accordance 
with the second law of thermodynamics. 

There exist already examples of instability in gravitationally stable fluids. 
One case is the ‘double-diffusive instability’ demonstrated by Stern (1960) and 
later investigators. Such an instability can be simply shown in a laboratory by 
pouring hot salt water over cold fresh water of higher density. Another case is 
the unstable oscillations occurring in a stably stratified stellar atmosphere (see 
e.g. Baker 1960). The instability-that is an effect of the dependence of opacity 
on the variables of state-plays an important role in the theory of pulsating stars. 

Several years ago the author suggested the existence of a ‘single diffusive 
instability’. It was at that time believed that the instability should bc of a 
cellular type. Frictional coupling between cells in regions of large p and small a, 
and regions of large a and small p, would be an important part of the mechanism. 
Attempts to demonstrate such an instability in a mercury-water system were, 
however, unsuccessful. (Possibly the presence of some nasty surface effects at  
the mercury-water interface prevents the necessary viscous coupling.) 

At this stage the author decided to try some numerical experiments for a 
continuously stratified fluid with suitable chosen functions p ( z )  and a(z). Such 
experimentswere carriedoutin thesummerof 1969usingthecomputer SAABD 21 
in Gothenburg, and were successful as unstable motions could be found. A special 
study of the stability of the numerical method was carried out to ensure that the 
observed instability was a real effect in the assumed physical system. 

The instability obtained in the numerical experiments turned out to be of a 
different type from that expected, being oscillatory rather than cellular. Fric- 
tional coupling played a minor role and unstable oscillations could actually be 
found in the limit of zero Prandtl number. 

A two-layer model was further analysed analytically. This model has one 
layer with /3 = 0,  a = a,, and one layer with /3 = Po, a = 0. Although drastically 
simplified it is felt that it provides some insight into the nature of the instability. 

This article starts with a discussion of a simple body oscillator. The mechanism 
of the unstable oscillations in a fluid is discussed in physical terms, then the 
two models are described in detail. An appendix on the numerical method 
completes the paper. 

2. The body oscillator 
Consider a fluid that is heated uniformly from above to give a linear temperature 

distribution To = pz. In this fluid a small, thermally conducting body is placed 
at its natural density level. The body will be subjected to a buoyancy force 

= 9 ~ ( P , % T , - P , ~ , ~ , h  (1) 
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where g is the acceleration due to gravity, V the volume of the body, T the 
temperature, p a standard density, and a the thermal expansion coefficient. 
Subscript 0 refers to the fluid, 1 to the body. It is assumed that poao > plal 
to make sure that the body has a gravitationally stable equilibrium. 

The body is now forced into small vertical oscillations of constant amplitude. 
There is a natural frequency at which the body can oscillate, but one may obtain 
other frequencies by attaching to the body an appropriate ideal spring (figure 1). 
If the co-ordinate z denotes the position of the body one may write z = zo sin wt, 
To = pz,sinot. The body temperature T, will show an attenuation and a phase 
lag relative to To, and one may write TI = a(w)pz,sin [ot-$(W)],  where a is an 
attenuation factor and # a phase angle. The work done by the buoyance force 
over one cvcle is 

= - ng Vp, al/3zI a sin $ 

(note that the To term does not contribute). If # lies in the range 0 to 7r, W is 
negative and the oscillations must die out if not sustained from outside. On the 
other hand, if $ lies in the range n to 27r, W is positive, and the oscillations may be 

FIGURE 1. The body oscillator in an idealized case. 

self-sustained even in the presence of friction. If one assumes a frictional force 
proportional to the velocity, P = - r(dz/dt), the frictional work over one period is 

The requirement W + D > 0 gives 

sin# < -wr~gVp,a,~a. (4) 

If r < gVp,c@(a/w) there will exist an interval of phase angles between 7~ and 
27r that allow instability. 

The above oscillator is a variant of the one discussed by Moore & Spiegel(lS66). 
They consider a small body in a fluid that is unstably stratified by heat. In  this 
case self-sustained oscillations may occur at  small phase angles. If the body attains 
its maximum temperature after it passes its lower turning point and is rising, 
and its minimum temperature after it passes its upper turning-point and is falling, 
the buoyancy force will contribute positive work. It is, however, obvious that 
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the same argument can be used for a fluid with reversed temperature stratifica- 
tion if the phase angle is increased by n-. 

Of course, there remains the practical question of how to obtain large enough 
phase angles. It can be shown that for a small, homogeneous sphere the phase 
lag for the volume averaged temperature (that, of course, is the meaning of the 
body temperature TI) is always less than an. Stability is therefore obtained when 
such a body hangs in a fluid heated from above. However, it is possible to surround 
the body with a shield of different material. If this material has a small thermal 
expansion coefficient one may obtain any wanted phase-lag by choosing an 
appropriate thickness of the shield. 

The above oscillator is a simple example of a system producing mechanical 
energy by the action of heat diffusion. It should be noted that there is no potent,ial 
energy available in the basic state, and that all mechanical energy therefore 
must come directly from the heat. 

3. A possible fluid oscillator 
Consider a fluid between two horizontal boundaries a t  a distance 2h, the 

lower kept at temperature To and the upper at temperature To + AT. It is assumed 
that the thermal expansion coefficient a varies, through its dependence on 
temperature or some other state variable. For example, let a be large in the upper 
portion of the fluid, smallin the lower portion of the fluid. The vertical temperature 
gradient p is modified by introducing internal heat sources and sinks, with a 
vertical distribution that creates a small ,8 in the upper portion and a large p 
in the lower portion of the fluid. 

Consider now a standing gravity wave within this fluid, with a wavelength L 
(assumed to be larger than h). The period of the oscillation is of order 

where Ap/p is the characteristic relative density variation across the fluid. 
Focusing attention on a part of the oscillation where the motion is upward it is 
seen that a negative temperature anomaly will be produced in the upper portion 
of the fluid, according to the equation aT/at = - p W + . . . . However, this anomaly 
will not produce any local buoyancy force, since CL is small. After some time, the 
anomaly has diffused into the lower portion, where, because of its low p, no 
thermal perturbations are directly produced. When the negative temperature 
anomaly reaches the lower portion a large negative buoyancy is set up. If this 
happens when the oscillation has turned and the motion is downward a positive 
work is produced. A similar argument applies for the other phase of the motion. 

A requirement for unstable oscillations is obviously that the diffusive time 
h 2 / ~  ( K  is the heat difisivity) is comparable to the above oscillation time; that 
gives g(Ap/p) h 3 / ~ 2  N (L/IZ,)~. The parameter on the left-hand side is the overall 
Schmidt number S for the fluid. Thus, for a given S one may have unstable 
oscillations for scales of order hS*. For sufficiently small 8, friction must, hox- 
ever, become important. Below a certain critical Schmidt number all scales 
must be stable. 
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The instability suggested here is similar to the one of the body oscillator. In  
both cases the temperature perturbations are produced in one portion of the 
system and diffused with a certain delay to another portion where the buoyancy 
forces develop. The delay is in both cases chosen such that the buoyancy force 
is positive during upward motion, negative during the downward motion, pro- 
ducing net mechanical energy. 

It may be noted that a similar argument can be developed for a travelling 
gravity wave. In  this c u e  one considers diffusive delays in space rather than in 
time. For example, looking on a crest of the travelling wave, one finds that a 
negative temperature anomaly is created in the upper portion of its front side. 
This diffuses down to produce a negative buoyancy force on the back of the wave, 
driving this forward. Similarly the downward motion on the back side creates a 
delayed upward buoyancy helping to rise the following crest. 

4. The stability problem for a two-layer model 
The simplest fluid model for which instability by diffusion has been proved is 

an unbounded two-layer model with p = 0, a = a. in one layer (say, the upper 
one), and p = Po, a = 0 in the other layer (figure 2). 

Layer 2 - 
u=ug p=0 

w, = Wl, w;= w;, T* = TI, Ti= r; 

Layer 1 
1 

\ 

* u=o B =Bo 

FIGURE 2. The two-layer model. 

The Prandtl number is zero (zero viscosity and a constant thermal diffusivity) 
and the Boussinesq approximation is applied. The variation in #? is assumed to 
be produced by an internal heat source a t  the interface. 

The governing perturbation equations become 

av, 1 
at Po at 
- = -- Vpe+gaoT2, V.v, = 0, 3 = KV~T,, (8), (9), (10) 

where v = (u, v, w) is the velocity and g the acceleration due to gravity (in the 
negative x direction). 

Subscript 1 denotes the lower layer, subscript 2 the upper layer. It is required 
that velocity and temperature vanish at large distances from the interface. At 
the interface one must match pressure, normal velocity, temperature and normal 
heat flux. 
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It has been assumed that no density jump occurs at  the interface (the pressure 
is proportional to p(dwldz),  and with a jump in density a jump in dwldz is also 
required, in a normal mode form). 

The thermal diffusion will, however, produce density perturbations in the 
upper layer. The model is, of course, unrealistic by the absence of a basic 
stable density gradient. However, the aim has been to simplify this model to  the 
maximum degree. The stable density gradient, the viscosity and the horizontal 
boundaries will be included in a second model treated in the following section. 

In  the linearized problem the following conditions are applied at  the un- 
disturbed interface, z = 0:  

p 2  = pl, w2 = w,, T2 = T,, aT,/az = aTl/az (at z = 0) .  (11)) (12), (13), (14) 

The variables p ,  u, v are eliminated between the equations of motion and the 
continuity equation and the form of normal modes is introduced 

w = W(z)exp[i(lc,x+~,,)+at], (15) 

T = O(z)exp[i(k,x+k,y)+(~t], (16) 

where kz, k,  are horizontal wave-numbers and cr a complex frequency. The follow- 
ing equations and interface conditions follow for W and 0 : 

where k = (k: + k;): is a total horizontal wave-number. 

ing at large distance from the interface: 
From the above equations (17)-(20) one derives the following solutions, decay- 

W, = A ekz, 0, = - (/3,/(T) A ekz + B eha, ( 2 5 ) )  (26) 

, 0, = Ce--Az, (27)) (28) W, = ( - ga, k 2 ~ / a 2 )  C e-Az + D eckz 

where A ,  B, C ,  D are arbitrary constants and h = ( k 2 + ( c r / ~ ) ) * ,  the root with 
positive real part being chosen. 

Applying the interface conditions (21 )-( 24) gives four homogeneous equations 
for A ,  B, C,  D and a characteristic equation 

Inserting back (T = K(A, - k2) and introducing A* = h/k,  S, = g a , ~ , / ~ ~ k * ,  the 
equation. takes the form 

h*(h*2- 1) (A*+ 1)2+&Xk = 0. (29a) 

Here a non-vanishing factor (A* - 1), has been divided out. 
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The above equation determines five roots A: as function of S,, which is a 
Schmidt number based on the scale k-l. Instability occurs when a t  least one 
value A t 2  has a real part larger than 1, since this gives a positive real part for CT. 
To begin with it can be verified that small S gives stability, large S instability. 
For small S the roots to (29a)  approach the values 

and all AT2 have real parts smaller than 1. For large S the roots approach the 
values 

Two of these roots (n = 2,3)  give instability. The corresponding real part of cr, 
representing the growth-rate, is Kk2(@k)%cos$n and the imaginary part of CT, 
representing the angular frequency of the oscillation, is * K ~ ~ ( $ S , ) Q  sintr .  

= 1, must be represented by a neutral 
oscillation, as (29 a )  cannot be satisfied by the real root A* = 1. The corresponding 
value of S, can be determined as follows. Put A* = a + ip. In  the marginal case one 
must have ct2 -82 = 1. The requirement that the imaginary part of the equation 
(29a)  should vanish gives a! - p2 = 0, and one finds 

The marginal case, where Re 

= [+(1+45)l2,  /? = * ( I +  J5). 

Inserting this value in the real part of (29a)  gives the critical value of S,: 

S,, = 1601p~(1 = 720+ 32045 1435.5. ( 30) 

The Schmidt number based on the wavelength differs from the above by a factor 
(2n)4 g 1558, and takes on a critical value of about 2.2 x lo6. 

The angular frequency of the neutral oscillation becomes 

w, = 2 a p ~ k ~  = (ls + J5)  ~k~ 1 9 . 0 3 ~ k ~ .  (31)  

A generalization of the above problem is obtained by introducing horizontal 
boundaries. For instance, if boundaries where w and T vanish are introduced a t  
z = * h, the solution is built up by terms of the form sinh k(z & h),  cosh k(x f. h). 
The characteristic equation obtained by applying the interface conditions 
becomes A* tanh a tanh (ah*) 

tanh (ah*) - A* tanh a ' 
= 2 -  4 ( ~ * 2 -  1)3 

S, 

where a = kh. Again it can be verified that the marginal case must be a neutral 
oscillation (the right-hand side of the equation, which is of the form 2 - x- (l/x), 
is negative for real positive arguments). In this problem one may introduce the 
Schmidt number S = qa,/3,E*/~~, based on the distance h, and ask for the range 
of a values giving instability at a given 8. For large S one can always find a range 
of large a values giving instability. This is the limiting case studied previously 
(for large a equation (32)  reduces to (29 a) ) .  For small enough S values the problem 
is, on the other hand, stable for all a values. Therefore a certain critical S value 
should exist. The numerical determination of this value from (32)  has not yet 
been made. 
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5. A numerical demonstration of the instability 
It should be of interest to have the diffusive instability demonstrated for at  

least one realistic case, where p and a vary continuously over the depth, and where 
the effects of viscosity and horizontal boundaries are included. This has been 
achieved by some numerical experiments carried out on the SAAB D 21 computer 
at  the University of Gothenburg, integrating the equations directly in time. 

The functions p and a that are used are shown in figure 3 (a).  In this case there 
exists a stable density stratification throughout the fluid. The coefficient of 
viscosity and the thermal diffusivity are assumed constant, and a partial 
Boussinesq approximation is used. As before, it is assumed that the variation 
in pis produced by an internal heat source, which in the present case is distributed 
over the depth. The model is described by the perturbation equations 

avpt = - (i/po) vp + g a ( Z )  T + V W V ,  (33) 
v.v = 0,  (34) 

a q a t  = - p(z)  w + K V T ,  (35) 
where, as before, v = (u, v, w) is the velocity and g the gravity, in the negative 
z direction. 

FIGURE 3. Vertical distribution of /3 and a (normalized). The idealized case used for the 
numerical experiment is shown in (a) ,  a possible case for a water layer near 4 "C that is 
heated radiatively is shown in (b) .  Note that the idealized profiles may be reflected 
through the line 6 = 0.5. 

Boundaries are introduced at  z = 0 and D.  These are assumed to be free (no 
tangential stress) and kept at  constant temperatures. Eliminating u, v and p 
between (33), (34) one finds 

Equations (35) and (36) determine w and T. The associated boundary conditions 

axe w = 0, a2w/az2 = 0, T = 0 at z = 0 ,D .  ( 3 7 ,  (38)) (39) 
Write 

w = W(z,t)exp[i(lc,x+L,y)], T = O(z,t)exp[i(lc,x+Jc,y)] (40)) (41) 
and define new variables for vertical distance, time and vertical velocity 

27r2 47T2Kt 

<=,) r = -  D2 ' 
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where a = kD/2n and a,, Po are amplitudes of the functions a and p: 
a = aoa*(6), P = PoP*(C)* 

Further let X = ga,PoD4/~2 be an overall Schmidt number and P = V / K  the 
Prantdl number. 

The equations and boundary conditions then take the form 

w = 0, a2w/ac2 = 0, 0 = 0 a t  g = 0, 2n, (44), (45), (46) 

where A = (a/4n2) #a. 
These equations were integrated numerically in time, starting from the initial 

condition w = sin Q 0 = 0. t The functions a*([) and p*(C) were represented by 
the expressions 

A 

(47, 48) 1 
arctanm(c-n) 

a* = $ + S + ( + - S )  
arctanmn ' 

arctanm(6-n) 
arctan mn 

p* = ++S-(+-8) with 8 = 0.05, m = 3. 

The parameters varied in the runs were P, X and a. The numerical scheme for 
the computations and a discussion of numerical stability and convergence are 
given in the appendix by Kjell HolmBker. In  most of the computations the 
step-length was A[ = 2n/40 (40 steps across the layer), AT = 0.01. The investiga- 
tion given by Holmkker shows that A7/(Ag)z must be chosen smaller than $ 
and 1/2P toensurenumericalstability. To test thenumericalaccuracy certain cases 
were re-run with smaller steps both in time and space. From these tests it was 
concluded that the numerical error in the amplitude of the oscillations was of 
order 1 yo after an integration time of 20 units (which typically gives 10 oscilla- 
tions). The accuracy was considered sufficient for the purpose of demonstrating 
the physical instability. (If one wants to determine a critical curve by this type 
of experiment smaller steps should be used.) 

The computations were made for three different Prandtl numbers, P = 1, 0.1 
and 0.01. For sufficiently large Schmidt number instability was always obtained 
for the values of P and a attempted. The critical X value was in the range 106-107. 
As an example, the runs for the case P = 0.01 are shown in figure 4. 

Examples of curves for the kinetic energy are given in figure 5 (a)-(c), for one 
damped, one weakly unstable and one strongly unstable case. The weakly un- 
stable case, in fact, was the first example of instability found in the numerical 
experiments. The variation of the vertical velocity and temperature perturbation 
over one cycle is shown in figure 6 for this case. The phase-lag between the 
temperature in the upper and the lower half of the fluid can be seen. In  the first 

7 This initial state was chosen in an attempt to find certain unstable cellular motions. 
The oscillations found in the numerical experiment turned out to be badly represented 
by this state. They could still be detected, but for some weakly unstable modes the 
inhegation had to be carried over apite a long time. 
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X 

10' .5 x 10' 

S 

FIGURE 4. Cases run numerically for P = 0.01. 0, stable case; x , unstable case. 

2 4 6 8 10 12 14 16 
0 

2 4 6 8 10 12 

t 

FIGURE 6 .  Kinetic energy as a function of time for P = 0.01. (a) S = 1.12 x lo6, a = 0.224; 
( 6 )  S = lo7, a = 0.1; ( c )  S = 7.8 x lo', a = 0.224. 
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profiles one sees the negative temperature produced in the upper layer by upward 
motion, and how the perturbation diffusesinto the lower layer. When the velocity 
has changed sign and the temperature in the upper layer is positive the lower- 
layer temperature is still negative (see t = 10.2 and 10-4), contributing positively 
to the buoyancy work. - P - 

-0.2-0.1 0 0.1 0.2 -0.2-0.1 0 0.1 0.2 -0.2-0.1 0 0.1 0.2 

,/---- 

9.8 .<..q 
10.4 ---" 11.2 

FIGURE 6. Time sequence over one cycle in the case P = 0.01, 8 = lo7, a = 0.1 (case ( b )  
in figure 5 ) .  -, vertical velocity; - - -, perturbation temperature. 

6. Possible applications 
The diffusive instability, demonstrated here for some simplified models, has 

not yet been observed in laboratory experiments or in nature, to the author's 
knowledge. Certainly it requires very special conditions to develop. The profiles 
for p and a must vary in the right way, and the Schmidt number must be very 
large. The unwillingness of the fluid to become unstable the 'wrong way' is 
also reflected by the relatively weak growth-rates which are found. 

Under laboratory conditions the instability may possibly be found for water; 
that is known to have a large variation in a near 4 "C. For a water layer kept 
close to 4 "C and heated radiatively such theoretical profiles for ,8 and a as are 
shown in figure 3 (b )  can be produced. The density stratification is stable every- 
where. In geophysical situations there are possibilities of oscillations of a similar 
type. The author has earlier speculated about such oscillations in a coupled 
atmosphere-ocean model. In  this case the difference in thermal expansion co- 
efficient and thermal capacity of air and water plays a main role. The delay 
depends both on diffusive and radiative processes at the interface. It is, however, 
difficult to test this idea because of the complexity of the system, that includes 
turbulent motions of different scales, but the present model study may encourage 
further work on the problem. 

The study of unstable oscillations in connexion with stellar problems was 
mentioned in $1. In this case radiative effects play the main role. The delay is 
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mainly local. If variations in p and a of the right type can be found in astro- 
physical situations it seems possible that oscillations of the type studied in this 
article can occur. Radiation rather than molecular diffusion would propagate 
the thermal anomalies from the generation region to the buoyancy -producing 
region. 

Finally, one may think of cases where buoyancy forces are produced by other 
processes than heat. For example, one may look on situations where buoyancy 
is produced by material diffusion, by condensation or by chemical reactions. 
In  all cases where a suitable delay occurs between the generation of the anomaly 
and the nearby production of the buoyancy force the possibility for an instability 
of the described type also exists. 

The author wants to thank Prof. L. Howard for some valuable discussions of 
this problem during an oceanographic cruise in the Kattegatt sea. Thanks are also 
due to Mr K. Holmkker who designed the numerical scheme, and Mr B. Jershed 
who carried out the machine calculations. Support for the work has been given 
by the Swedish Natural Science Research Council through contract no. 323-13. 

Appendix. Description of the numerical method with discussion of the 
convergence 
By KJELL H O L M ~ R ,  Department of Mathematics, Chalmers Institute of Technoiogy 

In  this appendix a numerical solution of the equations (42)-(46) above is 
discussed. Thus, consider the following equations 

at aT = (&-a2) T-q( z )w ,  

a a 2  2 
-(---az)w at a22 =p(&-a2) w - f ( z ) T ,  

w = a2w/dz2 = T = 0 for z = 0 and z = 2n, (A 3 )  

T = 0,  w = wo(z) for t = 0. (A 4) 

It is known that there is a constant A such that 0 < f(z) < A ,  0 < q(z )  < A .  

positive integer and k a small positive number. Consider the net-points 
We seek an approximate solution of this system for 0 6 t < to. Let J be a 

( z , t )  = ( jh ,nk) ,  where h = 2n-/J, j = 0,1, ..., J ,  t = nk, 

and n is an integer such that 0 < nk < to. Introduce a new variable 

# = a2w/az2-a2w. 

The resulting system of differential equations is then replaced by the following 
system of difference equations, namely 

T?+l- Ti” = TT+l - 2T7 + TY-L_, 
-a2T7-qiw? (j = 1, ..., J - 1 ) ,  (A 5) 3 

k h2 



(A 10) w%+l= wn+1= 0 J 

T; = 0,  w; = wo(jh), 4; = w~(jh)-a2wo(jh) (j = 0, ..., J ) .  (A 11) 

Here TT is supposed to approximate T(jh,nk), etc., and f j  and gj stand forffjh) 
and g(jh). 

With h = k /2 ,  where h is constant when we let h, k -+ 0, the equations (A 5 ) ,  
(A 7) and (A 9) become 

TY+l = hT?+Z+, + (1 - 2h - a2k) T? + AT,”_, - kgjw?, (A 12) 

wg;- (2 + a2h2) + WT-i’ = h2$7+1. (A 14) 

$?+l = PA$?+, + (1 - 2ph -pa2k) $7 +ph$j”_, - kf.Tj”+l, (A 13) 

Let 5?, 63 and 4 be the exact solution of (A 1)-(A 4) and assume that these func- 
tions are twice continuously differentiable with respect to t and four times with 
respect to  z for 0 < z < 2n, t 2 0. Then Taylor series expansions yield (with the 
notation !f”? = p( jh ,  nk), etc.) 

!f”?+l = + (1 - 2h - a%) TY + - kgj63T + O(h4), (A 15) 

4 (A 17) 

@+l = ph&’+l+(l -2ph-pa2k)$T+ph&-l-kfj~jn+1+O(h4), (A 16) 
wj-l -n+l- p+aw)q+l+~ti.n++ll = h2 ~+1+0(h4). 

Now the purpose is to prove that the solutions of the difference equations con- 
verge to the solutions of the differential equations. To be more precise, consider 
a sequence of nets with mesh sizes h,, k,; k,,/h; = A, h, -+ 0 as Y + co. Let (z ,  t )  
be a point belonging to all nets from a certain index vo. If z = j,h,, t = n,kv for 
Y yo, then the assertion is that IT?; - TY:l -+ 0 as Y + co, etc. - 

eF = TF-T?, = @-#, y? = GT-wy Set 3 3 

and subtract (A 12), (A 13), (A 14) from (A 15), (A 16), (A 17). Then one obtains 

ey+1 = he”,, + (1 - 2h - a2k) €7 + he”_, - k g j y r  + O(h4), (A 18) 

(A 19) ,fl+l= p + 1  = 0 

8Y+l = phaT+, + (1 - 2ph -pu2k) Sr +pha?-, - kfjeT+l + O(h4), (A 20) 

8t+l= p + 1 =  J 0 (A 21) 

(A 22) 

$+I = 0, (A 23) 

e ; = o ,  q = o ,  $ = o  ( j = O  ,..., J ) .  (A 24) 

0 J 

772: - (2 + a2h2) v?+l + $+i’ = h28r+1 + O(h4), 

In  (A 18), (A 20) and (A 2 2 ) j  runs from 1 to J -  1. 
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Set IIefill = ,?a:)erI, etc., and suppose h < min (i, l/Zp). Then 
4. 

)Ien+llJ < (1+a2k) Jje,Il +kA117;r"l\ +0(h4), 

IISn+lll < (1 +pa2k) /ISn/] +kAjlen+lll +O(h4). 

(A 251 

(A 26) 

In  order to estimate \(ym(( write (A 22) (with n instead of n+ 1) in matrix form: 

1 0 ... SF + O(h2) 

- r  714-1 + O(h2) 

where r = 2+a2h2. With 
0 r-l 0 ... 0 

B =  

... 0 r-l 
we obtain 

Now I - B is invertible, since 

llBlla = maxx,Ibij( = 2/r  < 1. 
i j  

r -- - 
1 From this we obtain 

1 - (1 BIJ a2h2' l l ( ~ - ~ ) - l ~ l a  < 

(A 27) 
r h2 1 

Hence 

Set Arb = max(~~eml~,  Il8"Il). From (A 25) ,  (A 26) and (A 27) it  follows that 

jlml/ < x2 7 (IIS"l1 + (ah2)) = 2 / l ~ " / /  + O(h2).  

An+l < (1 + Ck)  A, + Kk2 

for certain constants C and K. Since A, = 0, iteration of this formula gives 

An < k ( K / C )  [( 1 + Ck)" - 11 < k ( K / C )  (ecto - 1). 

For the point (z,  t )  = (jvhv, n$,) described above we consequently have 

l ~ ~ ; - T ~ ; l  = O(hE) as v+m, 

and similarly for w and q5. This proves the stated convergence. 

R E F E R E N C E S  

BAKER, N. H. 1960 Simplified models for cepheid instability. In  Stellar Evolution (ed. 

MOORE, I). & SPIEGEL, E. 1966 A thermally excited non-linear oscillator. Astrophys. J .  

STERN, M. 1960 The salt fountain and thermohaline convection. Tellus, 12,172-175. 

R. Stein and A. G. W. Cameron), pp. 333-346. New York: Plenum. 

143, 871-887. 


